Compact Laser Doppler Flowmeter (LDF) Fundus Camera for the Assessment of Retinal Blood Perfusion in Small Animals
نویسندگان
چکیده
PURPOSE Noninvasive techniques for ocular blood perfusion assessment are of crucial importance for exploring microvascular alterations related to systemic and ocular diseases. However, few techniques adapted to rodents are available and most are invasive or not specifically focused on the optic nerve head (ONH), choroid or retinal circulation. Here we present the results obtained with a new rodent-adapted compact fundus camera based on laser Doppler flowmetry (LDF). METHODS A confocal miniature flowmeter was fixed to a specially designed 3D rotating mechanical arm and adjusted on a rodent stereotaxic table in order to accurately point the laser beam at the retinal region of interest. The linearity of the LDF measurements was assessed using a rotating Teflon wheel and a flow of microspheres in a glass capillary. In vivo reproducibility was assessed in Wistar rats with repeated measurements (inter-session and inter-day) of retinal arteries and ONH blood velocity in six and ten rats, respectively. These parameters were also recorded during an acute intraocular pressure increase to 150 mmHg and after heart arrest (n = 5 rats). RESULTS The perfusion measurements showed perfect linearity between LDF velocity and Teflon wheel or microsphere speed. Intraclass correlation coefficients for retinal arteries and ONH velocity (0.82 and 0.86, respectively) indicated strong inter-session repeatability and stability. Inter-day reproducibility was good (0.79 and 0.7, respectively). Upon ocular blood flow cessation, the retinal artery velocity signal substantially decreased, whereas the ONH signal did not significantly vary, suggesting that it could mostly be attributed to tissue light scattering. CONCLUSION We have demonstrated that, while not adapted for ONH blood perfusion assessment, this device allows pertinent, stable and repeatable measurements of retinal blood perfusion in rats.
منابع مشابه
A novel, microscope based, non-invasive laser Doppler flowmeter for choroidal blood flow assessment.
Impaired ocular blood flow is involved in the pathogenesis of numerous ocular diseases like glaucoma or AMD. The purpose of the present study was to introduce and validate a novel, microscope based, non-invasive Laser Doppler Flowmeter (NI-LDF) for measurement of blood flow in the choroid. The custom made NI-LDF was compared with a commercial fiber optic based laser Doppler flowmeter (Perimed P...
متن کاملModern Diagnostic Techniques for the Assessment of Ocular Blood Flow in Myopia: Current State of Knowledge
Myopia is the most common refractive error and the subject of interest of various studies assessing ocular blood flow. Increasing refractive error and axial elongation of the eye result in the stretching and thinning of the scleral, choroid, and retinal tissues and the decrease in retinal vessel diameter, disturbing ocular blood flow. Local and systemic factors known to change ocular blood flow...
متن کاملChoroidal laser Doppler flowmeter with enhanced sensitivity based on a scattering plate.
A portable choroidal laser Doppler flowmeter (LDF) with enhanced sensitivity based on a scattering plate is developed. The portable LDF is weighted 2 kg operated at center wavelength of 780 nm, leading to a better penetration into the eye fundus in contrast to the previous LDF operated at center wavelength of 670 nm. Enhancement of number of detected photons that undergo Doppler scattering and ...
متن کاملSchlieren laser Doppler flowmeter for the human optical nerve head with the flicker stimuli.
We describe a device to measure blood perfusion for the human optic nerve head (ONH) based on laser Doppler flowmetry (LDF) with a flicker stimuli of the fovea region. This device is self-aligned for LDF measurements and includes near-infrared pupil observation, green illumination, and observation of the ONH. The optical system of the flowmeter is based on a Schlieren arrangement which collects...
متن کاملNon-Invasive Capillary Blood Flow Measurement: Laser Speckle and Laser Doppler
Microcirculation is essential for the proper supply of oxygen and nutritive substances to the biological tissue and the removal of waste products of metabolism. The determination of blood flow in the capillaries is therefore of great interest to clinicians. A comparison has been carried out using the developed non-invasive, non-contact and whole field laser speckle contrast imaging (LSCI) based...
متن کامل